Randomness in reduced order modeling

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

February 7, 2020
ICERM

Randomness is your friend

Many things that are difficult to accomplish with deterministic optimization/algorithms can be accomplished* with randomization.

Randomness is your friend

Many things that are difficult to accomplish with deterministic optimization/algorithms can be accomplished* with randomization.
*: with "high" probability

Randomness is your friend

Many things that are difficult to accomplish with deterministic optimization/algorithms can be accomplished* with randomization.
*: with "high" probability

We'll consider three examples of this in ROM:

- RBM for elliptic PDE's
- Sparse approximation
- Measure atomization/discretization

Randomness is your friend

Many things that are difficult to accomplish with deterministic optimization/algorithms can be accomplished* with randomization.
*: with "high" probability

We'll consider three examples of this in ROM:

- RBM for elliptic PDE's
- Sparse approximation
- Measure atomization/discretization

Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.
Let $\left(X_{m}\right)_{m \geqslant 1}$ be iid copies of X. Law of large numbers:

$$
S:=\sum_{m=1}^{M} X_{m} \rightarrow \mathbb{E}[X]
$$

Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.
Let $\left(X_{m}\right)_{m \geqslant 1}$ be iid copies of X. Law of large numbers:

$$
S:=\sum_{m=1}^{M} X_{m} \rightarrow \mathbb{E}[X]
$$

Furthermore, this convergence is quantitative through the Central limit theorem:

$$
S(M)-\mathbb{E}[X] \sim \mathcal{N}\left(0, \frac{\sigma^{2}(X)}{M}\right)
$$

In other words, S concentrates around $\mathbb{E}[X]$.

Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.
Let $\left(X_{m}\right)_{m \geqslant 1}$ be iid copies of X. Law of large numbers:

$$
S:=\sum_{m=1}^{M} X_{m} \rightarrow \mathbb{E}[X]
$$

Furthermore, this convergence is quantitative through the Central limit theorem:

$$
S(M)-\mathbb{E}[X] \sim \mathcal{N}\left(0, \frac{\sigma^{2}(X)}{M}\right)
$$

In other words, S concentrates around $\mathbb{E}[X]$.
This statement is quite powerful:

- S provides an estimator for $\mathbb{E}[X]$, without knowing $\mathbb{E}[X]$.
- Convergence is essentially independent of distribution of X.
- Convergence rate is independent of dimension of X.

Examples of concentration

Concentration in general plays an important role in computing estimates:

- Monte Carlo (CLT) estimates
- Chebyshev inequalities (bounds on mass away from the mean)
- Hoeffding inequalities (bounds on deviation of iid sums from the mean)
- Chernoff bounds (bounds on deviation of spectrum)
- Concentration of measure (bounds on deviation of random functions)

Today: We'll see a particular Chernoff bound in action.

Chernoff bound applications

We will see how randomization and Chernoff bounds can be applied to:

- RBM for elliptic PDE's
- Sparse approximation
- Measure atomization/discretization

Before discussing ROM, let's present the Chernoff bound.

Matrix law of large numbers

Let $\boldsymbol{G} \in \mathbb{R}^{N \times N}$ be a Gramian matrix that is an iid sum of symmetric rank-1 matrices.
I.e., let $\boldsymbol{X} \in \mathbb{R}^{N}$ have distribution μ on \mathbb{R}^{N}, and define

$$
\boldsymbol{G}:=\frac{1}{M} \sum_{m=1}^{M} \boldsymbol{X}_{m} \boldsymbol{X}_{m}^{T},
$$

where $\left\{\boldsymbol{X}_{m}\right\}_{m \geqslant 1}$ are iid copies of \boldsymbol{X}.
Chernoff bounds make quantitative statements about the spectrum of \boldsymbol{G} that depend on the distribution of \boldsymbol{X}.

Matrix law of large numbers
Let $\boldsymbol{G} \in \mathbb{R}^{N \times N}$ be a Gramian matrix that is an iid sum of symmetric rank-1 matrices.
I.e., let $\boldsymbol{X} \in \mathbb{R}^{N}$ have distribution μ on \mathbb{R}^{N}, and define

$$
\boldsymbol{G}:=\frac{1}{M} \sum_{m=1}^{M} \boldsymbol{X}_{m} \boldsymbol{X}_{m}^{T},
$$

where $\left\{\boldsymbol{X}_{m}\right\}_{m \geqslant 1}$ are iid copies of \boldsymbol{X}.
Chernoff bounds make quantitative statements about the spectrum of \boldsymbol{G} that depend on the distribution of \boldsymbol{X}.

For large M, we expect that

$$
(G)_{j, k} \xrightarrow{M \uparrow \infty} \mathbb{E}\left[X_{j} X_{k}\right] .
$$

Matrix law of large numbers

Let $\boldsymbol{G} \in \mathbb{R}^{N \times N}$ be a Gramian matrix that is an iid sum of symmetric rank-1 matrices.
l.e., let $\boldsymbol{X} \in \mathbb{R}^{N}$ have distribution μ on \mathbb{R}^{N}, and define

$$
\boldsymbol{G}:=\frac{1}{M} \sum_{m=1}^{M} \boldsymbol{X}_{m} \boldsymbol{X}_{m}^{T}
$$

where $\left\{\boldsymbol{X}_{m}\right\}_{m \geqslant 1}$ are iid copies of \boldsymbol{X}.
Chernoff bounds make quantitative statements about the spectrum of \boldsymbol{G} that depend on the distribution of \boldsymbol{X}.

For large M, we expect that

$$
(G)_{j, k} \xrightarrow{M \uparrow \infty} \mathbb{E}\left[X_{j} X_{k}\right] .
$$

For simplicity, in all that follows we assume that the components of \boldsymbol{X} are

- uncorrelated,
- of unit variance,
so that

$$
G \xrightarrow{M \uparrow \infty} I
$$

Matrix Chernoff bounds

The proximity of \boldsymbol{G} to \boldsymbol{I}, as a function of M, is determined by

$$
K:=\sup _{\boldsymbol{X}}\|\boldsymbol{X}\|_{2},
$$

which is assumed finite.

Matrix Chernoff bounds

The proximity of \boldsymbol{G} to \boldsymbol{I}, as a function of M, is determined by

$$
K:=\sup _{\boldsymbol{X}}\|\boldsymbol{X}\|_{2},
$$

which is assumed finite.

Theorem ([Cohen, Davenport, Leviatan 2012])
Assume that

$$
\frac{M}{\log M} \gtrsim \frac{K}{\delta^{2}} \log \left(\frac{1}{\epsilon}\right) .
$$

Then,

$$
\operatorname{Pr}\left[\left(\sigma_{\min }(\boldsymbol{G})<1-\delta\right) \bigcup\left(\sigma_{\max }(\boldsymbol{G})>1+\delta\right)\right] \leqslant \epsilon .
$$

Matrix Chernoff bounds

The proximity of \boldsymbol{G} to \boldsymbol{I}, as a function of M, is determined by

$$
K:=\sup _{\boldsymbol{X}}\|\boldsymbol{X}\|_{2}
$$

which is assumed finite.
Theorem ([Cohen, Davenport, Leviatan 2012])
Assume that

$$
\frac{M}{\log M} \gtrsim \frac{K}{\delta^{2}} \log \left(\frac{1}{\epsilon}\right) .
$$

Then,

$$
\operatorname{Pr}\left[\left(\sigma_{\min }(\boldsymbol{G})<1-\delta\right) \bigcup\left(\sigma_{\max }(\boldsymbol{G})>1+\delta\right)\right] \leqslant \epsilon .
$$

What can we do with \boldsymbol{G} ? Form least-squares approximations using \boldsymbol{X}. Remarks:

- The δ^{-2} dependence is "CLT-like".
- K is the only thing that depends on the distribution of X.

The induced distribution

It turns out that K can be quite large (or infinite) for practical situations.
A fix for this utilizes importance sampling. In particular, define

$$
\mathrm{d} \rho(x):=\left(\frac{1}{N} \sum_{n=1}^{N} x_{n}^{2}\right) \mathrm{d} \mu(x),
$$

where μ is the distribution of \boldsymbol{X}.
ρ is a probability measure on \mathbb{R}^{N}, and is frequently called the induced distribution.

A (more) optimal Chernoff bound

In practical scenarios, the induced distribution ρ can also be sampled from without too much effort.

More importantly, we can get a (much) better Chernoff bound here.
Let $\left(\boldsymbol{Y}_{m}\right)_{m \geqslant 1} \in \mathbb{R}^{N}$ be iid samples from ρ. We need to weight the Gramian so that we produce an unbiased estimate:

$$
\boldsymbol{F}:=\frac{1}{M} \sum_{m=1}^{M} w_{m} \boldsymbol{Y}_{m} \boldsymbol{Y}_{m}^{T}, \quad w_{m}:=\frac{\mathrm{d} \mu}{\mathrm{~d} \rho}\left(\boldsymbol{Y}_{m}\right)
$$

A (more) optimal Chernoff bound
In practical scenarios, the induced distribution ρ can also be sampled from without too much effort.

More importantly, we can get a (much) better Chernoff bound here.
Let $\left(\boldsymbol{Y}_{m}\right)_{m \geqslant 1} \in \mathbb{R}^{N}$ be iid samples from ρ. We need to weight the Gramian so that we produce an unbiased estimate:

$$
\boldsymbol{F}:=\frac{1}{M} \sum_{m=1}^{M} w_{m} \boldsymbol{Y}_{m} \boldsymbol{Y}_{m}^{T}, \quad w_{m}:=\frac{\mathrm{d} \mu}{\mathrm{~d} \rho}\left(\boldsymbol{Y}_{m}\right)
$$

This results in the (better) Chernoff bound

$$
\operatorname{Pr}\left[\left(\sigma_{\min }(\boldsymbol{F})<1-\delta\right) \bigcup\left(\sigma_{\min }(\boldsymbol{F})>1+\delta\right)\right] \leqslant \epsilon
$$

with the much more reasonable assumption

$$
\frac{M}{\log M} \gtrsim \frac{N}{\delta^{2}} \log \left(\frac{1}{\epsilon}\right)
$$

This Chernoff bound will be a seed for achieving model reduction.

Example 1: RBM (for elliptic problems)

Reduced basis methods

For the parameterized problem,

$$
-\nabla \cdot\left(\sum_{j=1}^{\infty} \mu_{j} a_{j}(x) \nabla u\right)=b
$$

with $\mu \in[-1,1]^{\infty}$, recall that RBM (essentially) iteratively computes

$$
\underset{\mu}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1}(u(\mu))\right\|
$$

Reduced basis methods

For the parameterized problem,

$$
-\nabla \cdot\left(\sum_{j=1}^{\infty} \mu_{j} a_{j}(x) \nabla u\right)=b
$$

with $\mu \in[-1,1]^{\infty}$, recall that RBM (essentially) iteratively computes

$$
\underset{\mu}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1}(u(\mu))\right\|,
$$

If (any truncation of) μ is high-dimensional, this is an expensive optimization, even if the objective is easy to evaluate.

There's a bigger problem: the arg max is typically taken over a discrete μ grid. If μ is high-dimensional, how can we certify error without densely sampling?

Reduction feasibility

Some analysis gives us a strategy to proceed: if the $\left\{a_{j}\right\}_{j=1}^{d}$ satisfies an ℓ^{p} summability condition,

$$
\sum_{j=1}^{\infty}\left\|a_{j}\right\|_{L^{\infty}}^{p}<\infty, \quad p<1
$$

then there is an N-dimensional downward-closed polynomial space P_{N} in the variable μ such that

$$
\sup _{\mu}\left\|u(\mu)-\operatorname{Proj}_{P_{N}} u(\mu)\right\| \leqslant N^{-s}, \quad \quad s:=\frac{1}{p}-\frac{1}{2}
$$

There are constructive algorithms to essentially identify P_{N}, [Cohen, Devore, Schwab 2011].

In particular, once P_{N} is identified, this approximation can be obtained by μ-least-squares approximation.

Polynomial meshes
l.e., if we can certify accuracy on a "polynomial grid", we can probably obtain accuracy.

Let μ be a random variable with distribution ν.

Polynomial meshes
l.e., if we can certify accuracy on a "polynomial grid", we can probably obtain accuracy.

Let μ be a random variable with distribution ν. Let $\boldsymbol{X}=\left(X_{n}(\nu)\right)_{n=1}^{N}$ denote a $\mathrm{d} \nu$-orthonormal basis for P_{N}. Define the induced distribution $\rho=\rho(\nu, \boldsymbol{X})$ based on this, sample $\left\{\boldsymbol{Y}_{m}\right\}_{m \geqslant 1}^{M}$ from ρ, and use this to discretize the arg max procedure in RBM.

Let $u_{N}(\mu)$ denote the resulting N-degree of freedom RBM surrogate.

Polynomial meshes
I.e., if we can certify accuracy on a "polynomial grid", we can probably obtain accuracy.

Let μ be a random variable with distribution ν. Let $\boldsymbol{X}=\left(X_{n}(\nu)\right)_{n=1}^{N}$ denote a $\mathrm{d} \nu$-orthonormal basis for P_{N}. Define the induced distribution $\rho=\rho(\nu, \boldsymbol{X})$ based on this, sample $\left\{\boldsymbol{Y}_{m}\right\}_{m \geqslant 1}^{M}$ from ρ, and use this to discretize the arg max procedure in RBM.

Let $u_{N}(\mu)$ denote the resulting N-degree of freedom RBM surrogate.
If

$$
\frac{M}{\log M} \gtrsim \frac{N}{\delta^{2}} \log \left(\frac{1}{\epsilon}\right),
$$

then the least-squares P_{N}-polynomial approximation $v_{N}(\mu) \in P_{N}$ to u_{N} satisfies

$$
\mathbb{E}\left[v_{N}(\mu)-u(\mu)\right]^{2} \lesssim N^{-2 s}+U^{2} \epsilon \frac{1+\delta}{1-\delta}
$$

where U is the uniform bound $U=\sup _{\mu}\|u(\mu)\|$.

Polynomial meshes
I.e., if we can certify accuracy on a "polynomial grid", we can probably obtain accuracy.

Let μ be a random variable with distribution ν. Let $\boldsymbol{X}=\left(X_{n}(\nu)\right)_{n=1}^{N}$ denote a $\mathrm{d} \nu$-orthonormal basis for P_{N}. Define the induced distribution $\rho=\rho(\nu, \boldsymbol{X})$ based on this, sample $\left\{\boldsymbol{Y}_{m}\right\}_{m \geqslant 1}^{M}$ from ρ, and use this to discretize the arg max procedure in RBM.

Let $u_{N}(\mu)$ denote the resulting N-degree of freedom RBM surrogate.
If

$$
\frac{M}{\log M} \gtrsim \frac{N}{\delta^{2}} \log \left(\frac{1}{\epsilon}\right),
$$

then the least-squares P_{N}-polynomial approximation $v_{N}(\mu) \in P_{N}$ to u_{N} satisfies

$$
\mathbb{E}\left[v_{N}(\mu)-u(\mu)\right]^{2} \lesssim N^{-2 s}+U^{2} \epsilon \frac{1+\delta}{1-\delta}
$$

where U is the uniform bound $U=\sup _{\mu}\|u(\mu)\|$. Without randomization, such a rigorous bound is practically infeasible.

Example 2: Sparse (polynomial) approximation

Underdetermined systems

Let \boldsymbol{x}_{0} be a signal (vector) in \mathbb{R}^{N}. If we have $M \geqslant N$ linear measurements of \boldsymbol{x}_{0} :

$$
\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{x}_{0}
$$

then there is (usually) a unique solution \boldsymbol{x}^{*} that minimizes the ℓ^{2} discrepancy:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{z} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{A} \boldsymbol{z}-\boldsymbol{b}\|_{2} .
$$

And (usually), $\boldsymbol{x}^{*}=x_{0}$.

Underdetermined systems

Let \boldsymbol{x}_{0} be a signal (vector) in \mathbb{R}^{N}. If we have $M \geqslant N$ linear measurements of \boldsymbol{x}_{0} :

$$
\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{x}_{0}
$$

then there is (usually) a unique solution \boldsymbol{x}^{*} that minimizes the ℓ^{2} discrepancy:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{z} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{A} \boldsymbol{z}-\boldsymbol{b}\|_{2}
$$

And (usually), $\boldsymbol{x}^{*}=\boldsymbol{x}_{0}$. The situation is (far) more complicated if $M<N$.
This is a particularly salient concern for MOR: \boldsymbol{x} may be a high-dimensional model, but we may only have a small number of measurements.

Compressive sampling

How can we make this problem well-posed?
Suppose that \boldsymbol{x}_{0} is s-sparse, i.e., the number of non-zero terms is at most $s \ll N$.
We can consider the optimization problem,

$$
\min \|\boldsymbol{z}\|_{0} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
$$

This problem is well-posed under mild conditions.

Compressive sampling

How can we make this problem well-posed?
Suppose that \boldsymbol{x}_{0} is s-sparse, i.e., the number of non-zero terms is at most $s \ll N$.
We can consider the optimization problem,

$$
\min \|\boldsymbol{z}\|_{0} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
$$

This problem is well-posed under mild conditions.
Unfortunately, it's also NP-hard. A (fairly naive) relaxation of this problem is

$$
\min \|\boldsymbol{z}\|_{1} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b} .
$$

This is a convex problem, and hence it is computationally practical to solve.

Compressive sampling

How can we make this problem well-posed?
Suppose that \boldsymbol{x}_{0} is s-sparse, i.e., the number of non-zero terms is at most $s \ll N$.
We can consider the optimization problem,

$$
\min \|\boldsymbol{z}\|_{0} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
$$

This problem is well-posed under mild conditions.
Unfortunately, it's also NP-hard. A (fairly naive) relaxation of this problem is

$$
\min \|\boldsymbol{z}\|_{1} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b} .
$$

This is a convex problem, and hence it is computationally practical to solve.
If \boldsymbol{x}_{0} is sparse, does the ℓ^{1} minimization problem recover the sparse solution?

Null space and restricted isometry properties

The matrix \boldsymbol{A} satisfies the (robust) null space property (NSP) with constant c and sparsity s if

$$
\begin{equation*}
\left\|\boldsymbol{k}_{S}\right\|_{1} \leqslant c\left\|\boldsymbol{k}_{S^{c}}\right\|_{1}, \tag{1}
\end{equation*}
$$

holds for every $\boldsymbol{k} \in \operatorname{ker}(\boldsymbol{A})$, and every subset $S \subset[N]$ with cardinality at most s.
Needless to say this is a rather difficult condition to verify directly.
But: (1) is a necessary and sufficient condition so that ℓ^{1} minimization and ℓ^{0} minimization are equivalent. [Cohen, Devore 2009]

Null space and restricted isometry properties

The matrix \boldsymbol{A} satisfies the (robust) null space property (NSP) with constant c and sparsity s if

$$
\begin{equation*}
\left\|\boldsymbol{k}_{S}\right\|_{1} \leqslant c\left\|\boldsymbol{k}_{S^{c}}\right\|_{1}, \tag{1}
\end{equation*}
$$

holds for every $\boldsymbol{k} \in \operatorname{ker}(\boldsymbol{A})$, and every subset $S \subset[N]$ with cardinality at most s.
Needless to say this is a rather difficult condition to verify directly.
But: (1) is a necessary and sufficient condition so that ℓ^{1} minimization and ℓ^{0} minimization are equivalent. [Cohen, Devore 2009]

There is a stronger condition to ensure that ℓ^{1} minimization can compute sparse solutions, the restricted isometry property (RIP).
\boldsymbol{A} satisfies the RIP with constant ϵ and sparsity s if

$$
(1-\epsilon)\|\boldsymbol{x}\|_{2} \leqslant\|\boldsymbol{A} \boldsymbol{x}\|_{2} \leqslant(1+\epsilon)\|\boldsymbol{x}\|_{2},
$$

for every s-sparse vector \boldsymbol{x}.
This condition may also seem difficult to verify, but it contains ℓ^{2} norms!

RIP and sparse approximation

The virtue of the RIP is that:

$$
\operatorname{RIP} \Longrightarrow \operatorname{NSP}\left(\Longleftrightarrow \ell^{1} \equiv \ell^{0}\right)
$$

and the RIP is much easier to verify. [Candes, Tao 2005]

RIP and sparse approximation

The virtue of the RIP is that:

$$
\mathrm{RIP} \Longrightarrow \operatorname{NSP}\left(\Longleftrightarrow \ell^{1} \equiv \ell^{0}\right)
$$

and the RIP is much easier to verify. [Candes, Tao 2005]
In particular, suppose that $\boldsymbol{B} \in \mathbb{R}^{P \times N}$ with $P \geqslant N$ satisfies

$$
1-\delta \leqslant \sigma_{\min }(\boldsymbol{B}), \quad \sigma_{\max }(\boldsymbol{B}) \leqslant 1+\delta
$$

Now, form \boldsymbol{A} from \boldsymbol{B} by uniformly at random subsampling M rows from \boldsymbol{B}.

RIP and sparse approximation

The virtue of the RIP is that:

$$
\operatorname{RIP} \Longrightarrow \operatorname{NSP}\left(\Longleftrightarrow \ell^{1} \equiv \ell^{0}\right)
$$

and the RIP is much easier to verify. [Candes, Tao 2005]
In particular, suppose that $\boldsymbol{B} \in \mathbb{R}^{P \times N}$ with $P \geqslant N$ satisfies

$$
1-\delta \leqslant \sigma_{\min }(\boldsymbol{B}), \quad \sigma_{\max }(\boldsymbol{B}) \leqslant 1+\delta
$$

Now, form \boldsymbol{A} from \boldsymbol{B} by uniformly at random subsampling M rows from \boldsymbol{B}.
Then \boldsymbol{A} satisfies the (s, ϵ) RIP "with high probability" if

$$
M \gtrsim K \log \left(\frac{1}{\epsilon}\right) \frac{1}{1-\delta^{2}} s \log ^{3}(s) \log N
$$

where K is the maximum row norm of \boldsymbol{B}.[Rauhut 2010]

RIP and sparse approximation

The virtue of the RIP is that:

$$
\operatorname{RIP} \Longrightarrow \operatorname{NSP}\left(\Longleftrightarrow \ell^{1} \equiv \ell^{0}\right)
$$

and the RIP is much easier to verify. [Candes, Tao 2005]
In particular, suppose that $\boldsymbol{B} \in \mathbb{R}^{P \times N}$ with $P \geqslant N$ satisfies

$$
1-\delta \leqslant \sigma_{\min }(\boldsymbol{B}), \quad \sigma_{\max }(\boldsymbol{B}) \leqslant 1+\delta
$$

Now, form \boldsymbol{A} from \boldsymbol{B} by uniformly at random subsampling M rows from \boldsymbol{B}.
Then \boldsymbol{A} satisfies the (s, ϵ) RIP "with high probability" if

$$
M \gtrsim K \log \left(\frac{1}{\epsilon}\right) \frac{1}{1-\delta^{2}} s \log ^{3}(s) \log N
$$

where K is the maximum row norm of \boldsymbol{B}.[Rauhut 2010]
The problems: (i) K can be very large, and (ii) sometimes P must be (extremely) large before δ is small.

The major point

If \boldsymbol{B} is a matrix with "nearly" orthonormal columns, and maximum row norm K, then forming \boldsymbol{A} with

$$
M \sim K s
$$

subsampled rows yields an RIP matrix.
Hence, if \boldsymbol{b} contains measurements from a sparse vector \boldsymbol{x}_{0}, then (with high probability) the solution to

$$
\min \|\boldsymbol{z}\|_{1} \quad \text { such that } \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
$$

is the sparse vector \boldsymbol{x}_{0}.

The major point (optimized)

From the Chernoff bound: Forming \boldsymbol{A} with

$$
M \sim 1 s
$$

subsampled rows yields an RIP matrix, if:

- we form \boldsymbol{B} by taking $P \sim N \log N$ samples from the induced distribution
- we use the appropriate biasing weights to rescale \boldsymbol{A}.

Hence with $M \sim s$ samples, we can guarantee recovery of sparse vectors with sparse measurements.[Adcock, Brugiapaglia, Razi, N 2020]

The major point (optimized)

From the Chernoff bound: Forming \boldsymbol{A} with

$$
M \sim 1 s
$$

subsampled rows yields an RIP matrix, if:

- we form \boldsymbol{B} by taking $P \sim N \log N$ samples from the induced distribution
- we use the appropriate biasing weights to rescale \boldsymbol{A}.

Hence with $M \sim s$ samples, we can guarantee recovery of sparse vectors with sparse measurements.[Adcock, Brugiapaglia, Razi, N 2020]

This type of guarantee is extremely difficult to achieve in general without randomization.

Randomness is your friend

Many things that cannot be accomplished with deterministic methods can be accomplished* with randomization.
*: with "high" probability

We looked at two examples of this in ROM:

- RBM for elliptic PDE's
- Sparse approximation

There are many more examples.

