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Randomness is your friend

Many things that are difficult to accomplish with deterministic
optimization/algorithms can be accomplished˚ with randomization.

˚: with “high” probability
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RBM for elliptic PDE’s
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Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.

Let pXmqmě1 be iid copies of X. Law of large numbers:

S :“
M
ÿ

m“1

Xm Ñ ErXs.

Furthermore, this convergence is quantitative through the Central limit theorem:

SpMq ´ErXs „ N
ˆ

0,
σ2
pXq

M

˙

.

In other words, S concentrates around ErXs.

This statement is quite powerful:

S provides an estimator for ErXs, without knowing ErXs.

Convergence is essentially independent of distribution of X.

Convergence rate is independent of dimension of X.

A. Narayan (U. Utah – SCI) Randomization and ROM



Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.

Let pXmqmě1 be iid copies of X. Law of large numbers:

S :“
M
ÿ

m“1

Xm Ñ ErXs.

Furthermore, this convergence is quantitative through the Central limit theorem:

SpMq ´ErXs „ N
ˆ

0,
σ2
pXq

M

˙

.

In other words, S concentrates around ErXs.

This statement is quite powerful:

S provides an estimator for ErXs, without knowing ErXs.

Convergence is essentially independent of distribution of X.

Convergence rate is independent of dimension of X.

A. Narayan (U. Utah – SCI) Randomization and ROM



Why is randomness helpful?

Intuition is straightforward and simplistic: Let X be a random variable.

Let pXmqmě1 be iid copies of X. Law of large numbers:

S :“
M
ÿ

m“1

Xm Ñ ErXs.

Furthermore, this convergence is quantitative through the Central limit theorem:

SpMq ´ErXs „ N
ˆ

0,
σ2
pXq

M

˙

.

In other words, S concentrates around ErXs.

This statement is quite powerful:

S provides an estimator for ErXs, without knowing ErXs.

Convergence is essentially independent of distribution of X.

Convergence rate is independent of dimension of X.

A. Narayan (U. Utah – SCI) Randomization and ROM



Examples of concentration

Concentration in general plays an important role in computing estimates:

Monte Carlo (CLT) estimates

Chebyshev inequalities (bounds on mass away from the mean)

Hoeffding inequalities (bounds on deviation of iid sums from the mean)

Chernoff bounds (bounds on deviation of spectrum)

Concentration of measure (bounds on deviation of random functions)

Today: We’ll see a particular Chernoff bound in action.

A. Narayan (U. Utah – SCI) Randomization and ROM



Chernoff bound applications

We will see how randomization and Chernoff bounds can be applied to:

RBM for elliptic PDE’s

Sparse approximation

Measure atomization/discretization

Before discussing ROM, let’s present the Chernoff bound.
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Matrix law of large numbers
Let G P R

NˆN be a Gramian matrix that is an iid sum of symmetric rank-1
matrices.

I.e., let X P R
N have distribution µ on RN , and define

G :“
1

M

M
ÿ

m“1

XmXT
m,

where tXmumě1 are iid copies of X.

Chernoff bounds make quantitative statements about the spectrum of G that
depend on the distribution of X.

For large M , we expect that

pGqj,k
MÒ8
ÝÑ ErXjXks.

For simplicity, in all that follows we assume that the components of X are
uncorrelated,
of unit variance,

so that

G
MÒ8
ÝÑ I
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Matrix Chernoff bounds
The proximity of G to I, as a function of M , is determined by

K :“ sup
X
}X}2,

which is assumed finite.

Theorem ([Cohen, Davenport, Leviatan 2012])
Assume that

M

logM
Á
K

δ2
log

ˆ

1

ε

˙

.

Then,

Pr
”

pσminpGq ă 1´ δq
ď

pσmaxpGq ą 1` δq
ı

ď ε.

What can we do with G? Form least-squares approximations using X.
Remarks:

The δ´2 dependence is “CLT-like”.

K is the only thing that depends on the distribution of X.
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The induced distribution

It turns out that K can be quite large (or infinite) for practical situations.

A fix for this utilizes importance sampling. In particular, define

dρpxq :“

˜

1

N

N
ÿ

n“1

x2n

¸

dµpxq,

where µ is the distribution of X.

ρ is a probability measure on RN , and is frequently called the induced distribution.
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A (more) optimal Chernoff bound

In practical scenarios, the induced distribution ρ can also be sampled from without
too much effort.

More importantly, we can get a (much) better Chernoff bound here.

Let pY mqmě1 P R
N be iid samples from ρ. We need to weight the Gramian so that

we produce an unbiased estimate:

F :“
1

M

M
ÿ

m“1

wmY mY T
m, wm :“

dµ

dρ
pY mq

This results in the (better) Chernoff bound

Pr
”

pσminpF q ă 1´ δq
ď

pσminpF q ą 1` δq
ı

ď ε,

with the much more reasonable assumption

M

logM
Á
N

δ2
log

ˆ

1

ε

˙

.

This Chernoff bound will be a seed for achieving model reduction.
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Example 1: RBM (for elliptic problems)
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Reduced basis methods

For the parameterized problem,

´∇ ¨

˜

8
ÿ

j“1

µjajpxq∇u

¸

“ b,

with µ P r´1, 1s8, recall that RBM (essentially) iteratively computes

argmax
µ

}upµq ´ Pj´1pupµqq} ,

If (any truncation of) µ is high-dimensional, this is an expensive optimization, even
if the objective is easy to evaluate.

There’s a bigger problem: the argmax is typically taken over a discrete µ grid. If µ
is high-dimensional, how can we certify error without densely sampling?
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Reduction feasibility

Some analysis gives us a strategy to proceed: if the tajudj“1 satisfies an `p

summability condition,

8
ÿ

j“1

}aj}
p
L8 ă 8, p ă 1,

then there is an N -dimensional downward-closed polynomial space PN in the
variable µ such that

sup
µ

›

›upµq ´ ProjPN
upµq

›

› ď N´s, s :“
1

p
´

1

2
.

There are constructive algorithms to essentially identify PN , [Cohen, Devore, Schwab
2011].

In particular, once PN is identified, this approximation can be obtained by
µ-least-squares approximation.
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Polynomial meshes

I.e., if we can certify accuracy on a “polynomial grid”, we can probably obtain
accuracy.

Let µ be a random variable with distribution ν.

Let X “ pXnpνqq
N
n“1 denote a

dν-orthonormal basis for PN . Define the induced distribution ρ “ ρpν,Xq based on
this, sample tY mu

M
mě1 from ρ, and use this to discretize the argmax procedure in

RBM.

Let uN pµq denote the resulting N -degree of freedom RBM surrogate.

If

M

logM
Á
N

δ2
log

ˆ

1

ε

˙

,

then the least-squares PN -polynomial approximation vN pµq P PN to uN satisfies

E rvN pµq ´ upµqs
2
À N´2s

` U2ε
1` δ

1´ δ
,

where U is the uniform bound U “ supµ }upµq}. Without randomization, such a
rigorous bound is practically infeasible.
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Example 2: Sparse (polynomial) approximation
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Underdetermined systems

Let x0 be a signal (vector) in RN . If we have M ě N linear measurements of x0:

b :“ Ax0,

then there is (usually) a unique solution x˚ that minimizes the `2 discrepancy:

x˚ :“ argmin
zPRN

}Az ´ b}2 .

And (usually), x˚ “ x0.

The situation is (far) more complicated if M ă N .

This is a particularly salient concern for MOR: x may be a high-dimensional model,
but we may only have a small number of measurements.
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Compressive sampling

How can we make this problem well-posed?

Suppose that x0 is s-sparse, i.e., the number of non-zero terms is at most s ! N .

We can consider the optimization problem,

min }z}0 such that Az “ b.

This problem is well-posed under mild conditions.

Unfortunately, it’s also NP-hard. A (fairly naive) relaxation of this problem is

min }z}1 such that Az “ b.

This is a convex problem, and hence it is computationally practical to solve.

If x0 is sparse, does the `1 minimization problem recover the sparse solution?
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Null space and restricted isometry properties

The matrix A satisfies the (robust) null space property (NSP) with constant c and
sparsity s if

}kS}1 ď c }kSc}1 , (1)

holds for every k P kerpAq, and every subset S Ă rN s with cardinality at most s.

Needless to say this is a rather difficult condition to verify directly.

But: (1) is a necessary and sufficient condition so that `1 minimization and `0

minimization are equivalent. [Cohen, Devore 2009]

There is a stronger condition to ensure that `1 minimization can compute sparse
solutions, the restricted isometry property (RIP).

A satisfies the RIP with constant ε and sparsity s if

p1´ εq}x}2 ď }Ax}2 ď p1` εq}x}2,

for every s-sparse vector x.

This condition may also seem difficult to verify, but it contains `2 norms!
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RIP and sparse approximation

The virtue of the RIP is that:

RIP ùñ NSPpðñ `1 ” `0q

and the RIP is much easier to verify. [Candes, Tao 2005]

In particular, suppose that B P R
PˆN with P ě N satisfies

1´ δ ď σminpBq, σmaxpBq ď 1` δ.

Now, form A from B by uniformly at random subsampling M rows from B.

Then A satisfies the ps, εq RIP “with high probability” if

M Á K log

ˆ

1

ε

˙

1

1´ δ2
s log3psq logN,

where K is the maximum row norm of B.[Rauhut 2010]

The problems: (i) K can be very large, and (ii) sometimes P must be (extremely)
large before δ is small.

A. Narayan (U. Utah – SCI) Randomization and ROM



RIP and sparse approximation

The virtue of the RIP is that:

RIP ùñ NSPpðñ `1 ” `0q

and the RIP is much easier to verify. [Candes, Tao 2005]

In particular, suppose that B P R
PˆN with P ě N satisfies

1´ δ ď σminpBq, σmaxpBq ď 1` δ.

Now, form A from B by uniformly at random subsampling M rows from B.

Then A satisfies the ps, εq RIP “with high probability” if

M Á K log

ˆ

1

ε

˙

1

1´ δ2
s log3psq logN,

where K is the maximum row norm of B.[Rauhut 2010]

The problems: (i) K can be very large, and (ii) sometimes P must be (extremely)
large before δ is small.

A. Narayan (U. Utah – SCI) Randomization and ROM



RIP and sparse approximation

The virtue of the RIP is that:

RIP ùñ NSPpðñ `1 ” `0q

and the RIP is much easier to verify. [Candes, Tao 2005]

In particular, suppose that B P R
PˆN with P ě N satisfies

1´ δ ď σminpBq, σmaxpBq ď 1` δ.

Now, form A from B by uniformly at random subsampling M rows from B.

Then A satisfies the ps, εq RIP “with high probability” if

M Á K log

ˆ

1

ε

˙

1

1´ δ2
s log3psq logN,

where K is the maximum row norm of B.[Rauhut 2010]

The problems: (i) K can be very large, and (ii) sometimes P must be (extremely)
large before δ is small.

A. Narayan (U. Utah – SCI) Randomization and ROM



RIP and sparse approximation

The virtue of the RIP is that:

RIP ùñ NSPpðñ `1 ” `0q

and the RIP is much easier to verify. [Candes, Tao 2005]

In particular, suppose that B P R
PˆN with P ě N satisfies

1´ δ ď σminpBq, σmaxpBq ď 1` δ.

Now, form A from B by uniformly at random subsampling M rows from B.

Then A satisfies the ps, εq RIP “with high probability” if

M Á K log

ˆ

1

ε

˙

1

1´ δ2
s log3psq logN,

where K is the maximum row norm of B.[Rauhut 2010]

The problems: (i) K can be very large, and (ii) sometimes P must be (extremely)
large before δ is small.

A. Narayan (U. Utah – SCI) Randomization and ROM



The major point

If B is a matrix with “nearly” orthonormal columns, and maximum row norm K,
then forming A with

M „ Ks

subsampled rows yields an RIP matrix.

Hence, if b contains measurements from a sparse vector x0, then (with high
probability) the solution to

min }z}1 such that Az “ b,

is the sparse vector x0.
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The major point (optimized)

From the Chernoff bound: Forming A with

M „ 1s

subsampled rows yields an RIP matrix, if:

we form B by taking P „ N logN samples from the induced distribution

we use the appropriate biasing weights to rescale A.

Hence with M „ s samples, we can guarantee recovery of sparse vectors with
sparse measurements.[Adcock, Brugiapaglia, Razi, N 2020]

This type of guarantee is extremely difficult to achieve in general without
randomization.
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Randomness is your friend

Many things that cannot be accomplished with deterministic methods can be
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There are many more examples.
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